Kossel diffraction observed with an x-ray color camera during PIXE of multilayers with nanometric period

Meiyi Wu, Karine Le Guen, Jean-Michel André, Philippe Jonnard, Ian Vickridge, Didier Schmaus, Emrick Briand, Philippe Walter, Qiushi Huang, Zhanshan Wang

1 Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 4 place Jussieu, F-75252 Paris cedex 05, France
2 Sorbonne Universités, UPMC Univ Paris 06, Institut des NanoSciences de Paris, CNRS UMR 7588, 4 place Jussieu, boîte courrier 840, F-75252 Paris cedex 05, France
3 Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale, 4 place Jussieu, 75005 Paris, France
4 Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China

Excitation with protons of a periodic stack of alternating high and low indices results in emission of characteristic x-rays from within the stack, that present significant interference effects when observed in the vicinity of the Bragg angle corresponding to the characteristic X-ray wavelength and multilayer stack period. This is termed Kossel diffraction. Simulations show that the angular distribution of the characteristic X-rays in the vicinity of the Bragg angle is very sensitive to the stacking order and to interface diffusion and roughness, due to the precise positioning of the corresponding X-ray standing wave within the multilayer stack. We have previously presented a proof-of-principle experiment in which we give the first observations of PIXE Kossel diffraction from a practically ideal multilayer stack, using a Cr/B₄C/Sc of period 1.72 nm [1]. In that work, a highly collimated Peltier cooled Rontec X-ray detector at fixed angle was used whilst the multilayer was oriented with a channelling goniometer, resulting in very long measurements with limited angular resolution and counting statistics. In the present work, we present PIXE Kossel interference curves obtained with an X-ray camera, with much improved angular resolution and counting statistics, from a series of multilayer stacks of nanometric period with various stacking orders and interface structures, showing that PIXE Kossel measurements can be a reliable alternative to X-ray Standing Wave methods for characterisation of nanometric periodic multilayer structures.