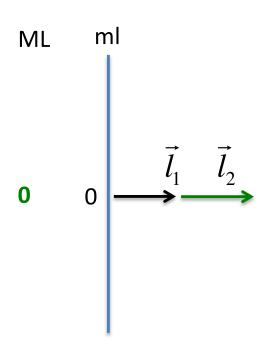
Nomenclature générale: Termes Spectraux (atomes) Addition des moments (cinétique/spin)

He
$$(1s^2)$$
: 1S

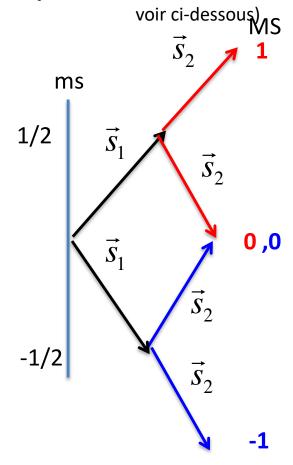
$$He\ (1s^12s^1):\ ^1S,\ ^3S$$

Rappel: Pour chaque électron on a 1 moment angulaire l et 2l+1 valeurs de m_l et un moment de spin s et 2s+1 valeurs de m_s=±1/2 (soient 2 orientations du vecteur s,



Les valeurs possibles de M_L et M_S sont alors pour He

$$M_L = m_{l_1} + m_{l_2} \Rightarrow 0$$



$$M_S = m_{s_1} + m_{s_2} \Longrightarrow 1,0,0,-1_{56}$$

$$M_L = 0, M_S = 0 \Rightarrow L = 0, S = 0 \Rightarrow$$
 $M_L = 0, M_S = -1, 0, 1 \Rightarrow L = 0, S = 1 \Rightarrow {}^3S$

C'est ce que l'on appelle les TERMES SPECTRAUX

En général on note

$$L =$$

$$L = 0 \quad 1 \quad 2 \quad 3 \dots$$

$$S =$$

$$S = 0 \quad 1 \quad 2 \quad 3 \dots$$

Multiplicité de spin: 2S+1 1 3 5 7 ...

$$He (1s^2): {}^{1}S$$

BILAN:
$$He (1s^{2}): {}^{1}S$$
 $He (1s^{1}2s^{1}): {}^{1}S, {}^{3}S$

Cas général de tous les atomes à couches fermées (2 électrons/orbitale)

Généralisation des Termes spectraux aux atomes plus complexes (au delà de 2 é)

Pour établir les termes spectraux d'un atome on ne considère que les électrons non appariés

- -Addition des moments angulaires (l) des électrons célibataires uniquement
- -Addition des spin (s) des électrons célibataires uniquement

Exemple: Cas du Carbone

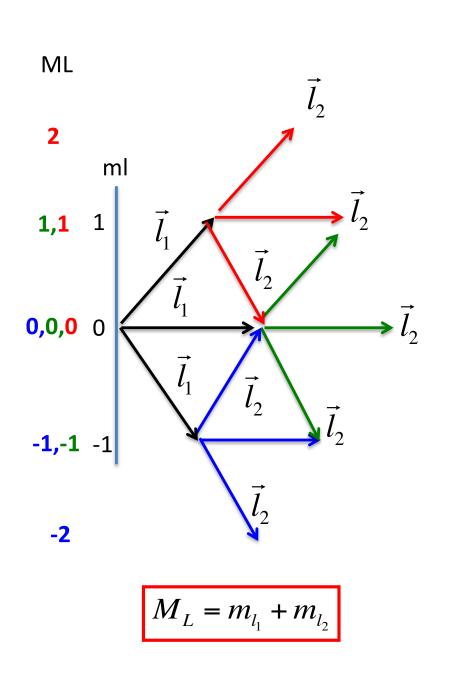
$$C(Z=6): 1s^2 2s^2 (2p^2)$$

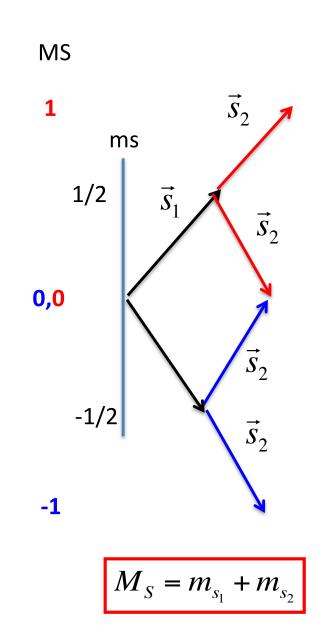
$$2p^{2}$$
:
 $l_{1} = 1$, $m_{l_{1}} = -1,0,1$; $s_{1} = \frac{1}{2}$, $m_{s_{1}} = \pm \frac{1}{2}$
 $l_{2} = 1$, $m_{l_{2}} = -1,0,1$; $s_{2} = \frac{1}{2}$, $m_{s_{2}} = \pm \frac{1}{2}$

 $2l_1 + 1$ valeurs de m_{l_1} ; $2s_1 + 1$ valeurs de m_{s_1} $2l_2 + 1$ valeurs de m_{l_2} ; $2s_2 + 1$ valeurs de m_{s_2}

$$C(Z=6)$$
: $1s^2 2s^2 2p^2$

Addition vectorielle des moments





On voit désormais par addition vectorielle des moments (cinétique et spin) séparemment que l'on fait apparaître plusieurs valeurs différentes de M_L et M_S

$$M_L = -2, -1, -1, 0, 0, 0, 1, 1, 2$$

 $M_S = -1, 0, 0, 1$

Première manière de faire : simple mais moins pédagogique.... et surtout nous conduit dans l'impasse

Un façon rapide de classer ces éléments par « famille » est d'utiliser les relations de la MQ appliquées à M_L et M_S

$$-L \le M_L \le +L$$
$$-S \le M_S \le +S$$

On voit immédiatement que 3 valeurs de L ressortent: L=0,1,2 On voit immédiatement que 2 valeurs de S ressortent: S=0,1

$$L = 2 \Rightarrow M_L = -2, -1, 0, 1, 2$$

$$L = 1 \Rightarrow M_L = -1, 0, 1$$

$$L = 0 \Rightarrow M_L = 0$$

$$S = 1 \Rightarrow M_S = -1,0,1$$

 $S = 0 \Rightarrow M_S = 0$

les TERMES SPECTRAUX possibles du carbone atomique sont en principe alors

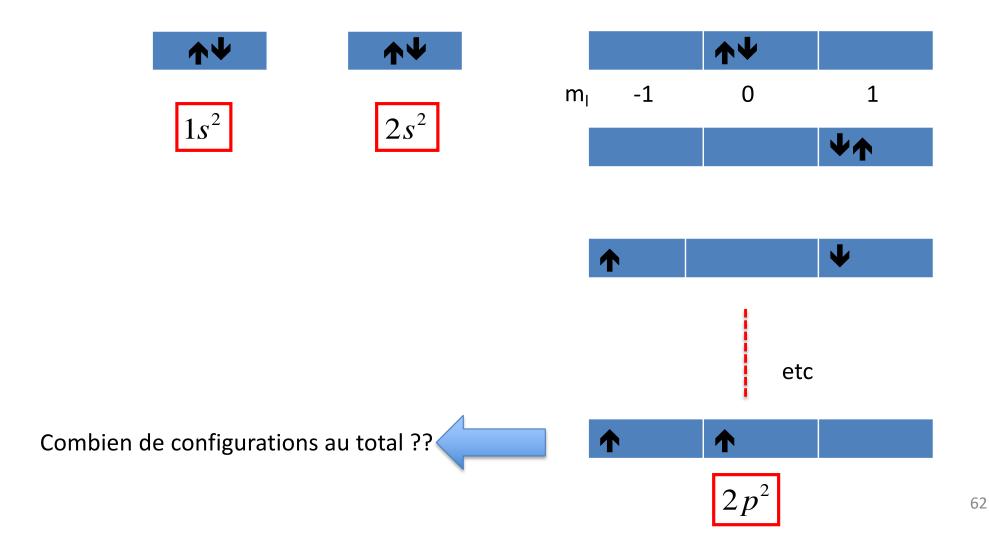
$$^{1,3}D,^{1,3}P,^{1,3}S$$

Oui mais,il y a un problème car a t-on bien tenu compte du Principe de Pauli ???? (2 é ne peuvent avoir simultanément les 4 nombres quantiques (I,m_I,s,m_s) identiques)

Deuxième manière de faire : plus longue mais plus pédagogique.... et surtout nous conduit à une sélection des bons Termes spectraux

Dénombrement de ce que l'on appelle les micro-états (couples M_L/M_S)

Carbone: Nombre de façons de ranger 2 é (célibataires) dans 6 cases quantiques



1- Supposons (à tort) que les électrons sont discernables et que je n'applique pas le principe Pauli

$$N_T = (2l_1 + 1)(2s_1 + 1)(2l_2 + 1)(2s_2 + 1)$$

Pour 2é: $N_T = (3)(2)(3)(2) = 36$

2- Mais en réalité les (2) électrons sont des particules indiscernables

$$N'_T = \frac{N_T}{n!} = 18$$
 (n=2)

=> je dois diviser le nb N_T de configurations par n!

Facile à voir: vous mettez une couleur différente sur chaque é

Puis ensuite vous supprimer la couleur... vous voyez alors que plusieurs configurations sont identiques!

3- Si je considère enfin le principe de Pauli pour les fermions (é) : cela revient à considérer que $N''_T = \frac{6x5}{2} = 15 \ configs$ les fermions (é) : cela revient à considérer que si un é occupe une des cases quantiques le second ne peut pas occuper la même case (spin et espace)

$$N''_T = \frac{6x5}{2} = 15 \ configs$$

Cela en fait revient à établir le nombre $\,\,{C}_{p}^{n}\,\,$ De combinaisons de ranger n é parmi p casés n= nombre d'é célibataires p= nombre de cases quantiques

$$N_T'' = C_6^2 = \frac{6!}{2!4!} = \frac{6*5*4*3*2}{2*4*3*2} = 15$$

(pour le carbone atomique)

Remarque importante: cas de l'Oxygène

$$O(Z=8): 1s^2 2s^2 2p^4$$

La couche 2p est plus qu'à moitié pleine: Ici cela revient donc à considérer les « trous » ou lacunes (au nombre de 2) plutôt que les électrons (4). Mais au final le nombre de combinaisons de ranger 2 trous parmi 6 cases quantiques est identique au nombre de combinaisons de ranger 4 électrons parmi 6 cases quantiques

$$2p^{4}(\acute{e}lectrons) \Leftrightarrow 2p^{2}(trous)$$

$$l_{1} = 1, \ m_{l_{1}} = -1, 0, 1; \ s_{1} = \frac{1}{2}, \ m_{s_{1}} = \pm \frac{1}{2}$$

$$l_{2} = 1, \ m_{l_{2}} = -1, 0, 1; \ s_{2} = \frac{1}{2}, \ m_{s_{2}} = \pm \frac{1}{2}$$

 $2l_1 + 1$ valeurs de m_{l_1} ; $2s_1 + 1$ valeurs de m_{s_1} $2l_2 + 1$ valeurs de m_{l_2} ; $2s_2 + 1$ valeurs de m_{s_2}

$$N_T'' = C_6^4 = C_6^2 = \frac{6!}{2!4!} = \frac{6*5*4*3*2}{2*4*3*2} = 15$$

(pour l'oxygène atomique) 64

Dressons maintenant le tableau des micro-configurations du Carbone

Exemple de notation: 1 micro-config

1		
$m_{l_1} = 1, m_{s_1} = \frac{1}{2}$	7	$m_{l_2} = 0, m_{s_2} = 0$

MS	1	0	-1
ML			
2	(1,1) (interdit=>Pauli)	$(1,\overline{1})$	$(\overline{1},\overline{1})$ (interdit=>Pauli)
1	(1,0)	$(0,\overline{1})$ $(\overline{0},1)$	$(\overline{1},\overline{0})$
0	(1,-1)	$(1,-\overline{1}) \qquad (\overline{1},-1) $ $(0,\overline{0})$	$(\overline{1}, -\overline{1})$
-1	(-1,0)	$(0,-1)(\overline{0},-1)$	$(-\overline{1},\overline{0})$
-2	(-1,-1) (interdit=>Pauli)	$(-1, -\overline{1})$	$(-\overline{1}, -\overline{1})$ (interdit=>Pauli)

15 micro-états que maintenant Il faut ranger.....par famille (même énergie)

MS ML	1	0	-1
2		$(1,\overline{1})$	
1	(1,0)	$(0,\overline{1})$ $(\overline{0},1)$	$(\overline{1},\overline{0})$
0	(1,-1)	$(1,-\overline{1}) (\overline{1},-1) \\ (0,\overline{0})$	$(\overline{1}, -\overline{1})$
-1	(-1,0)	$(0,-\overline{1})(\overline{0},-1)$	$(-\overline{1},\overline{0})$
-2		(-1, -1)	

La MQ nous impose que $-L \le M_L \le L$ et $-S \le M_S \le S$

$$-L \le M_L \le L$$

$$-S \le M_S \le S$$

Commençons par

$$M_L = 2, M_S = 0$$

 $(1,\overline{1}) \in L = 2, S = 0$

(Nécéssairement, il n'y a pas d'autres choix)

il existe (2L+1)(2S+1) = 5 micro-états associés

$$L = 2 \Rightarrow M_L = -2, -1, 0, 1, (2)$$

S=0 \Rightarrow M_S = 0

La μ -config. $(1,\overline{1})$ soit $M_L = 2, M_S = 0$ est déjà recensée \blacksquare Il reste donc à piocher $M_L = -2, -1, 1, 2$ et $M_S = 0$

	MS	1	0	-1
ML				
2			$(1,\overline{1})$	
1		(1,0)	$(0,\overline{1})$ ou $(\overline{0},1)$	$(\overline{1},\overline{0})$
0		(1,-1)	$(1,-\overline{1})$ ou $(\overline{1},-1)$ ou $(0,\overline{0})$	$(\overline{1}, -\overline{1})$
-1		(-1,0)	$(0,-\overline{1})^{\text{ou}}(\overline{0},-1)$	$(-\overline{1},\overline{0})$
-2			$(-1,-\overline{1})$	

(J'ai indiqué » ou» car aucune des configurations individuelles n'est une fonction propre de L2

Il faudrait en fait pour chaque case prendre des combinaisons linéaires des μ-configs ce qui revient par exemple si nous avons 2 μ -configs dans la case, à générer 2 nouvelles μ -configs sur la base des 2 μ -config. initiales. 67

Au final on part de 2 μ -configs pour arriver à 2 nouvelles μ -configs, ce qui ne change pas le nombre de μ -configs.....hups)

Pour le couple L=2,S=0

il existe donc (2L+1)(2S+1) = 5 micro-états associés

Terme spectral ??

$$L =$$

$$S =$$

2S + 1Multiplicité de spin:

$$2S+1$$

Terme spectral: 1 \bigcap

Il ne reste plus désormais que 10 micro-états à ranger: Je n'ai plus de μ -config sur la ligne=>je passe à la ligne suivante

ML	MS	1	0	-1
2				
1		(1,0)	$(\overline{0},1)$	$(\overline{1},\overline{0})$
0		(1,-1)	$(\overline{1},-1)$ $(0,\overline{0})$	$(\overline{1}, -\overline{1})$
-1		(-1,0)	$(\overline{0}, -1)$	$(-\overline{1},\overline{0})$
-2				

(1,0)

$$M_L = 1, M_S = 1$$

 $(1,0) \in L = 1, S = 1$

il existe
$$(2L+1)(2S+1) = 9$$
 micro-états associés

$$\Rightarrow M_L = -1,0,1 ; M_S = -1,0,1$$

La μ -config. $M_L = 1$; $M_S = 0$ est déjà recensée

MS ML	1	0	-1
2			
1	(1,0)	$(\overline{0},1)$	$(\overline{1},\overline{0})$
0	(1,-1)	$(\overline{1},-1)$ ou $(0,\overline{0})$	$(\overline{1}, -\overline{1})$
-1	(-1,0)	$(\overline{0},-1)$	$(-\overline{1},\overline{0})$
-2			

Enfin II ne reste plus qu'une seule μ -config

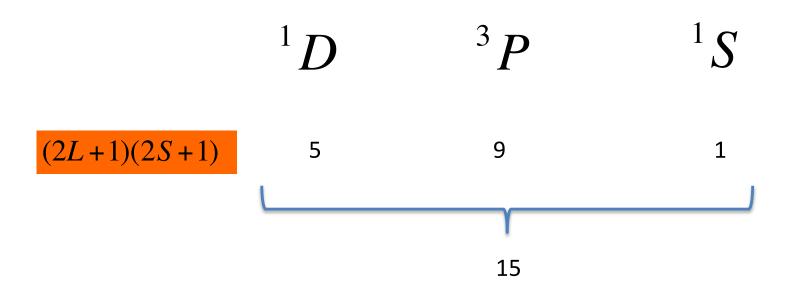
MS ML	1	0	-1
2			
1			
0		$(0,\overline{0})$ $M_L = 0, M_S = 0$	
-1			
-2			

 $(0,0) \in L = 0, S = 0$

=> pour le couple L=0,S=0

 ^{1}S

BILAN

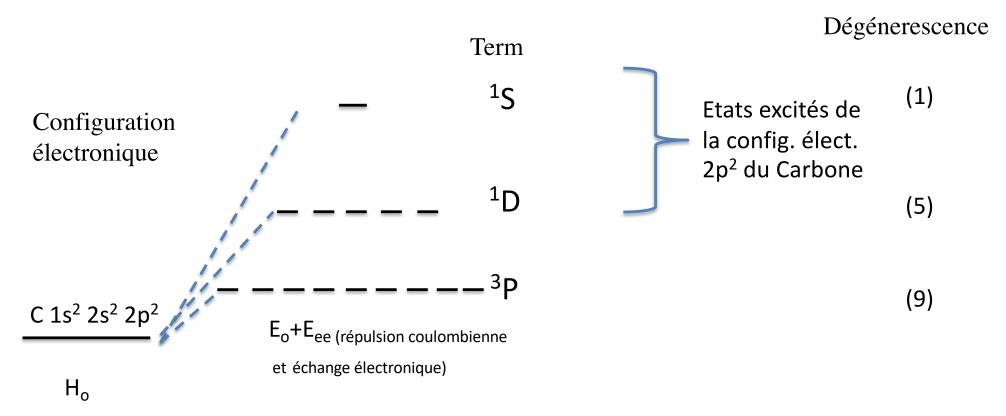


NB: Pour chaque terme spectral, l'ensemble des micro-états ont même énergie: DEGENERESCENCE

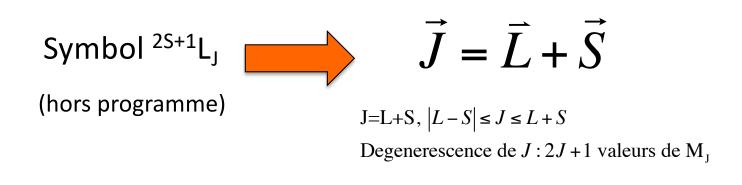
REGLE DE HUND: Le terme spectral de l'état électronique fondamental est le terme de plus grande multiplicité de spin

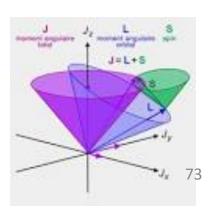
 ^{3}P

(attention on ne peut prédire l'ordre des états excités sans calculs ou expérience. Seul l'état fondamental est prédictible)



Rmq: On peut aussi avoir un couplage possible entre L et S => Couplage Spin-orbite (LS coupling) Rmq: L et S ne sont alors plus de bons nombres quantiques: seul J devient un bon nb Q.





Energie d'interation spin-orbite $E_{so} = \frac{\kappa}{2} [J(J+1) - S(S+1) - L(L+1)]$ (Hors programme)

Dans le cas du carbone (couche 2p remplie à moins de la moitié)=> κ est positive Dans le cas de l'oxygène (couche 2p remplie à plus de la moitié)=> κ est négative

=> Oxygène: $E(^{3}P_{2}) < E(^{3}P_{1}) E(^{3}P_{0})$

remarque

$$J = 0, S = 1, L = 1 \Rightarrow E_{so} = -2\kappa$$

$$J = 1, S = 1, L = 1 \Longrightarrow E_{so} = -\kappa$$

$$J = 2, S = 1, L = 1 \Rightarrow E_{so} = K$$

Configurations **Termes** électroniques $2p^13s^1$ $^{1}P_{1}$ 7.68 eV 7.489 eV $C 1s^2 2s^2 2p^13s^1$ $2p^{1}3s^{1}$: 7.482 eV $l_1 = 1, \ m_{l_1} = -1,0,1; \ s_1 = \frac{1}{2}, \ m_{s_1} = \pm \frac{1}{2}$ $l_2 = 0, \ m_{l_2} = 0; \ s_2 = \frac{1}{2}, \ m_{s_2} = \pm \frac{1}{2}$ 7.479 eV **Absorption UV Transitions Permises** Excitation 2p -> 3s 5 10⁻³ eV $^{3}P_{2}$ Termes possibles 2 10⁻³ eV ${}^{3}P_{0,1,2}$ C 1s² 2s² 2p² $^{1}P_{1}$ $^{3}P_{0}$ 0 eV

REGLES DE SELECTION (couplage LS)

$$\Delta S = 0$$

$$\Delta L = 0, \pm 1 \quad (\Delta l = \pm 1)$$

$$\Delta J = 0, \pm 1 \quad (\text{sauf J=0} \rightarrow \text{J=0})$$

$$\text{avec J=L+S}, \quad |L - S| \le J \le L + S$$

https://www.nist.gov/pml/atomic-spectra-database

Cliquez sur levels

Dans case spectrum: taper C I

Dans Levels Units : sélectionnez

75